
YRmx

Case study:
a Real-Time Framework optimized

for Process Control
in a family of industrial equipments

Giuliano Colla
Copeca srl.

Industrial process

● A complex process involving many
simultaneous operations can be split in a
number of almost-independent
sub-processes

● The sub-processes can be implemented as
tasks in a real-time multitasking
environment

Linux real-time

● Modern Linux vanilla kernels provide
latencies appropriate for not too demanding
soft real-time multitasking

● RT_PREEMP kernels make possible
user-space hard real-time multitasking

Process Task

● A task is neither a Unix process nor a
Unix thread

● It is better defined as a sub-process

● It has independent life like a process

● It takes advantage of the thread scheduling
mechanism

● It shares the environment with other tasks
like a thread

Implementing process Tasks

● Can be implemented as threads, but
keeping in mind the task peculiarities

● An appropriate framework can provide
appropriate API's, making
development easier, faster and less
error-prone

YRmx framework
● Provides a Task software object, by

encapsulating a Linux thread

● Provides a message-exchange mechanism
for:

– task synchronization
– inter-task communication
– delay
– periodic execution
– mutual exclusion and memory

management

YRmx mechanism
send message

● A task sends a message to an exchange:

– If another task is waiting at the
exchange, it receives the message and
is made runnable

– If no task is waiting, the message is
appended to the exchange

YRmx mechanism
receive message

● A task waits for a message at an exchange:

– If a message is available, the task
receives the message

– If no message is available, the task is
suspended (blocked)

YRmx mechanism
timing

● A task waits for a message at an exchange
and specifies a timeout value:

– If a message becomes available,
before the timeout, the task receives
the message, and becomes runnable

– If no message arrives, when the
timeout expires the task receives a
timeout_type message and becomes
runnable

YRmx mechanism
response_exchange

● Each message includes a
response_exchange field to provide a
two-way communication

YRmx features

● Ease and simplicity

– Reduced training time
– Reduced probability of errors

YRmx features

● Task isolation

– Parallel development: reduced time-to
market

– Independent test and simulation:
better robustness with lower
development costs

YRmx features

● Contextual activation and communication

– Lower latency
– Reduced risks of improper handling of

resource contention

YRmx features

● response_exchange

– Two way communication
– Eliminates the need for call-back

 Frank program test

I7 4 core
@1.2 GHz

Min Average Max

sem_timedwait

One-way 2158 16355 45616

Round trip 3458 21184 50379

Delay list

One-way 1761 6869 37505

Round trip 3234 11287 42658

Case study: Bookmaker
machines

Bookmaker machines

Bookmaker machines

 Specifications

● 2000 booklets of 25 pages/hour

● Over 50,000 pages/hour
● Guarantee booklet integrity and security

● User friendly GUI

● Store and provide information for QC,
traceability and usage optimization

● Connect to factory LAN

● Connect from remote

 Project data

● The operations to fabricate a booklet
require 20 to 25 seconds

● Fabrication must be split in steps to be
executed in parallel

● From 50 to > 100 sub-processes/tasks

● 1 ms lost for each page determines a
throughput loss of 25 booklets/hour

System design

Hardware Layout Software Layout

 Hardware requirements

● Harsh industrial environment
● Long term support

● Good Linux support

● Good quality TS display

 Hardware selected

● Industrial grade

● 10 Years support

● Intel I7 quad core
@1.2 to 2.2 GHz

● 16GB Flash disk
● 15” TFT with TS

● NCS Computers

 System software

● CentOS 6 (RHEL 6)
● Kernel 3.10.10-rt7

● KDE Desktop (Qt based)

● Fpc Lazarus – Object Pascal – Qt widgetset

 Human Interface
requirements

● Pleasant look

● User friendly

● Must interface seamlessly to Real-Time tasks
for

– Sending commands

– Receiving responses

– Reacting to asynchronous events
● Must provide different levels of permissions

● Must hide whatever is not allowed in the
current context

Main state diagram

IPC layout

 Real-Time design

● Keep private all exchanges not needed by
other tasks

● All application messages are of the same
length

● A task receiving a message must always
modify appropriately content and type and

– Either it forward to another exchange
– Or send it back to the
response_exchange

 Message response rules

● A response must specify if the requested
action was executed or not.

● A response must specify if an error was
encountered (odd type) or not (even type)

● A non-error response must be sent to the
response_exchange, an error response
must be forwarded to the error exchange
(err_ex)

Skeleton application task

Main process control

State Machine: Running – Stopped

Process control

Simple synchronization

static void WaitOk (void) {

MSG_DESCRIPTOR *hmsg;

 hmsg = rqwait(&start_ex,0);

 rqsend(&start_ex,hmsg);

 }

Support for step-by-step

static void WaitOk (void) {

MSG_DESCRIPTOR *hmsg;

 hmsg = rqwait(&start_ex,0);

 if (ByStep)

 hmsg->response_exchange = &stop_ex;

 rqsend(hmsg->response_exchange,hmsg);

 }

Search go_msg

static MSG_DESCRIPTOR *search_go (void) {
 MSG_DESCRIPTOR *go_msg;
 go_msg = rqacpt(&start_ex);
 if (go_msg == NULL) go_msg = rqacpt(&stop_ex);
 while (go_msg == NULL) {
 go_msg = rqwait(&start_ex,5);
 if (go_msg­>type == timeout_type) {
 go_msg = rqwait(&stop_ex,5);
 if (go_msg­>type == timeout_type)
 go_msg = NULL;
 }
 }
 return (go_msg);
 }

Error handling

Serial communication

● BitBus derived protocol

● Standard Linux driver
● 4 wires RS422

● 9 Bit multidrop

● 230 kBaud

 Transport layer

● Keeps a buffer for each slave
● Poll slaves at 1 ms rate

● Receives packets to send at mast_ex

● Sends transmission results to individual box
appropriate exchange

● Sends received packets to answ_ex

 Transport layer (simplified)

 Data transmission specs

● Packets as short as possible (each byte
requires 50μs)

● Handle simultaneous requests for send to
different slaves

● Perform message-to-packet convert
● Message sent only when ACK received

● Handle response to a message

● Handle send failures

 Data transmission

● Strip the header, leaving only tag and type
● Split the logic into a driver task and a send

task
● One driver task per slave

● Perform message-to-packet convert

● Maintain a table of sent messages to match
answers (conntrack-like philosophy)

● Handles an abort requests

 Data Transmission
(simplified)

 Data receive

● A received message tag field can be

– Non-null: response to a message sent

– Null: asynchronous (unsolicited) message for status or error
information

● Valid tag field: the original message is found in the table, and
modified with received data

● Null tag field: a message is taken from the pool and modified with
received data. The response_exchange is taken from a dispatch
table from the dev field.

● The resulting message is sent either to the response_exchange or to
err_ex

 Data receive (simplified)

Error handling

Message structure

#pragma pack(1)
#define MaxPosLen 192
typedef struct {
 msghdr;
 unsigned short tag;
 unsigned char unit;
 unsigned char len;
 unsigned char device;
 unsigned int fstat; Sensor state←
 unsigned int ftout; Timeouts←
 unsigned int fover; Overruns←
 unsigned short cuts;
 unsigned char pos[MaxPosLen];
 } STANDARD_MSG_DESCRIPTOR;

Results

● First machine – rather simple – upgrade of previous
one – slave units already debugged

● HI: > 20,000 lines Object Pascal – rewritten

● Real-time: ≃ 10,000 lines C - rewritten

● Debugged and tested in simulation

● Install, test and fix details on the real machine: 2 days

● Factory tests – several weeks – passed

● Shipped

Acknowledgements

● Robert Kahn (Intel corp)

● Paolo Mantegazza (Politecnico di Milano) and RTAI team

● Thomas Gleixner and Rt-Linux team

● Florian Klämpfl and FPC team

● Mattias Gärtner and Lazarus team

● The Open Source community

● Aldo Vitrò (NCS computers)

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49

