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Industrial process

● A complex process involving many 
simultaneous operations can be split in a 
number of almost-independent 
sub-processes 

● The sub-processes can be implemented as 
tasks in a  real-time multitasking 
environment



Linux real-time

● Modern Linux vanilla  kernels provide 
latencies appropriate for not too demanding 
soft real-time multitasking 

● RT_PREEMP kernels make possible 
user-space hard real-time multitasking



Process Task

● A task is neither a Unix process nor a 
Unix thread

● It is better defined as a sub-process

● It has independent life like a process

● It takes advantage of the thread scheduling 
mechanism

● It shares the environment with other tasks 
like a thread



Implementing process Tasks

● Can be implemented as threads, but 
keeping in mind the task peculiarities

● An appropriate framework can provide 
appropriate API's, making 
development easier, faster and less 
error-prone



YRmx framework
● Provides a Task software object, by 

encapsulating a Linux thread

● Provides a message-exchange mechanism 
for:

– task synchronization
– inter-task communication
– delay
– periodic execution
– mutual exclusion and memory 

management 



YRmx mechanism
send message

● A task sends a message to an exchange:

– If another task is waiting at the 
exchange, it receives the message and 
is made runnable

– If no task is waiting, the message is 
appended to the exchange

 



YRmx mechanism
receive message

● A task waits for a message at an exchange:

– If a message is available, the task 
receives the message

– If no message is available, the task is 
suspended (blocked)

 



YRmx mechanism
timing

● A task waits for a message at an exchange 
and specifies a timeout value:

– If a message becomes available, 
before the timeout, the task receives 
the message, and becomes runnable

– If no message arrives, when the 
timeout expires the task receives a 
timeout_type message and becomes 
runnable

 



YRmx mechanism
response_exchange

● Each message includes a 
response_exchange field to provide a 
two-way communication 



YRmx features

● Ease and simplicity

– Reduced training time
– Reduced probability of errors



YRmx features

● Task isolation

– Parallel development:  reduced time-to 
market

– Independent test and simulation: 
better robustness with lower 
development costs



YRmx features

● Contextual activation and communication

– Lower latency
– Reduced risks of improper handling of 

resource contention



YRmx features

● response_exchange

– Two way communication
– Eliminates the need for call-back



 Frank program test

I7 4 core 
@1.2 GHz

Min Average Max

sem_timedwait

One-way 2158 16355 45616

Round trip 3458 21184 50379

Delay list

One-way 1761 6869 37505

Round trip 3234 11287 42658



Case study: Bookmaker 
machines



Bookmaker machines



Bookmaker machines



 Specifications

● 2000 booklets of 25 pages/hour

● Over 50,000 pages/hour
● Guarantee booklet integrity and security

● User friendly GUI

● Store and provide information for QC, 
traceability and usage optimization

● Connect to factory LAN

● Connect from remote



 Project data

● The operations to fabricate a booklet 
require 20 to 25 seconds

● Fabrication must be split in  steps to be 
executed in parallel

● From 50 to > 100 sub-processes/tasks

● 1 ms lost for each page determines a 
throughput loss of 25 booklets/hour 



System design

Hardware Layout Software Layout



 Hardware requirements

● Harsh industrial environment
● Long term support

● Good Linux support

● Good quality TS display



 Hardware selected

● Industrial grade

● 10 Years support

● Intel I7 quad core 
@1.2 to 2.2 GHz

● 16GB Flash disk
● 15” TFT with TS

● NCS Computers



 System software

● CentOS 6 (RHEL 6)
● Kernel 3.10.10-rt7

● KDE Desktop (Qt based)

● Fpc Lazarus – Object Pascal – Qt widgetset



 Human Interface 
requirements

● Pleasant look

● User friendly

● Must interface seamlessly to Real-Time tasks 
for 

– Sending commands

– Receiving responses

– Reacting to asynchronous events
● Must provide different levels of permissions

● Must hide whatever is not allowed in the 
current context



Main state diagram



IPC layout



 Real-Time design

● Keep private all exchanges not needed by 
other tasks

● All application messages are of the same 
length

● A task receiving a message must always 
modify appropriately content and type and

– Either it forward to another exchange
– Or send it back to the 
response_exchange 



 Message response rules

● A response must specify if the requested 
action was executed or not. 

● A response must specify if an error was 
encountered (odd type) or not (even type)

● A non-error response must be sent to the 
response_exchange, an error response 
must be forwarded to the error exchange 
(err_ex)



Skeleton application task



Main process control

State Machine: Running – Stopped



Process control 

Simple synchronization

static void WaitOk (void) {

MSG_DESCRIPTOR *hmsg;

    hmsg = rqwait(&start_ex,0);

    rqsend(&start_ex,hmsg);

    }

Support for step-by-step

static void WaitOk (void) {

MSG_DESCRIPTOR *hmsg;

    hmsg = rqwait(&start_ex,0);

    if (ByStep)

       hmsg->response_exchange = &stop_ex;

    rqsend(hmsg->response_exchange,hmsg);

    }



Search go_msg

static MSG_DESCRIPTOR *search_go (void) {
    MSG_DESCRIPTOR *go_msg;
    go_msg = rqacpt(&start_ex);
    if (go_msg == NULL) go_msg = rqacpt(&stop_ex);
    while (go_msg == NULL) {
        go_msg = rqwait(&start_ex,5);
        if (go_msg­>type == timeout_type) {
            go_msg = rqwait(&stop_ex,5);
            if (go_msg­>type == timeout_type)
              go_msg = NULL;
            }
        }
    return (go_msg);
    }



Error handling



Serial communication 

● BitBus derived protocol

● Standard Linux driver
● 4 wires RS422

● 9 Bit multidrop

● 230 kBaud



 Transport layer

● Keeps a buffer for each slave
● Poll slaves at 1 ms rate

● Receives packets to send at mast_ex

● Sends transmission results to individual box 
appropriate exchange

● Sends received packets to answ_ex



 Transport layer (simplified)



 Data transmission specs

● Packets as short as possible (each byte 
requires 50μs)

● Handle simultaneous requests for send to 
different slaves

● Perform message-to-packet convert
● Message sent only when ACK received

● Handle response to a message

● Handle send failures



 Data transmission

● Strip the header, leaving only tag and type
● Split the logic into a driver task and a send 

task
● One driver task per slave

● Perform message-to-packet convert

● Maintain a table of sent messages to match 
answers (conntrack-like philosophy)

● Handles an abort requests



 Data Transmission 
(simplified)



 Data receive

● A received message tag field can be

– Non-null: response to a message sent

– Null: asynchronous (unsolicited) message for status or error 
information

● Valid tag field: the original message is found in the table, and 
modified with received data

● Null tag field: a message is taken from the pool and modified with 
received data. The response_exchange is taken from a dispatch 
table from the dev field.

● The resulting message is sent either to the response_exchange or to 
err_ex



 Data receive (simplified)



Error handling



Message structure

#pragma pack(1)
#define MaxPosLen   192
typedef struct {
        msghdr;
        unsigned short  tag;
        unsigned char   unit;
        unsigned char   len;
        unsigned char   device;
        unsigned int    fstat;   Sensor state←
        unsigned int    ftout;   Timeouts←
        unsigned int    fover;   Overruns←
        unsigned short  cuts;
        unsigned char   pos[MaxPosLen];
        } STANDARD_MSG_DESCRIPTOR;



  



  



  



Results

● First machine – rather simple – upgrade of previous 
one – slave units already debugged

● HI: > 20,000 lines Object Pascal – rewritten

● Real-time: ≃ 10,000 lines C - rewritten

● Debugged and tested in simulation

● Install, test and fix details on the real machine: 2 days

● Factory tests – several weeks – passed

● Shipped 
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