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Abstract

The specific real-time requirements for industrial process control are illustrated, which differ from other

real-time application fields, such as measurement and data collection and multimedia. Relevant factors

are analysed. Namely: intrinsic performance, required human interaction, robustness and reliability,

together with economic factors, such as development costs, maintenance costs and code re-usability.

The YRmx framework is described, which is optimized with respect to the above factors, together with

its usage in current Realtime Linux. A set of applications based on the same framework is described,

used in a family of industrial equipments for the fabrication of booklets with critical high security and

high productivity requirements, such as chequebooks, voucher booklets, payment booklets etc. Those

equipments are currently in use by security printers all over the world.

1 Introduction

The traditional approach to software process control
is well known and well established: an initialization
section, followed by an endless loop which reads the
inputs, applies the control algorithm, and then up-
dates the outputs.

It is so common that the industry supplies a large
number of specialized computers, providing just this
processing scheme: the Programmable Logic Con-
trollers or PLC’s.[1][2][3][4]

In theory this scheme could be applied to any
process, from the simplest ones, such as turning on
and off a bulb following a push button, to the most
complex ones, such as controlling a nuclear plant.

However, as the process complexity increases,
this approach shows its limits, in terms of response
time, efficiency, practical implementation, and devel-
opment costs, up to the point of becoming extremely
impractical or even impossible to implement.

Splitting the process in a number of sub-
processes and using parallel computation techniques
provides a more general solution, overcoming the

flaws of the traditional approach. This requires
a multi-tasking, event-driven scheduling scheme,
which can be implemented on top of modern Real-
Time Linux kernels.

This paper covers the case study for a family
of industrial machines meant to fabricate booklets,
and the chosen framework, i.e. YRmx, which is a
lightweight wrapper around glibc pthread routines,
to provide a set of API’s optimized for industrial pro-
cess control. Their simplicity and ease to use greatly
help to improve software robustness, and to reduce
development costs, without incurring in performance
penalties.

2 Background

Industrial process requirements differ from other
field of real-time applications, such as measurement
and multimedia. The main peculiarity of process
control is the bidirectional data flow toward external
devices: data are collected from external sensors, and
commands are generated toward external actuators.
Another peculiarity is that individual tasks have usu-
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ally very short execution times, because they must
just take decisions from the input data they receive.

As the process complexity increases, the number
of tasks required to implement the control functions
increases accordingly, and from physical input events
to physical actuation quite a number of tasks may be
involved. This, together with the above peculiarities,
makes task switching latency a critical factor, fre-
quently even more important than interrupt latency.

When a number of intermediate tasks are in-
volved between physical input and physical output,
just activating a task is not sufficient: information
must be passed at the same time. Therefore a mech-
anism which at the same time activates a task and
provides information on “what to do” and maybe
“how to do it” or “what to expect” is highly de-
sirable. Moreover individual tasks must be as iso-
lated and independent as possible, both for good
programming practice (hidden implementation), and
for ease of simultaneous developing by different pro-
grammers, and ease of debugging, testing and simu-
lation.

In the industrial world, economic requirements
must be added to the purely technical ones. There-
fore development time and cost become impor-
tant factors, together with maintenance costs, and
code re-usability.

A set of API’s as simple and straightforward as
possible reduces the likelihood of hard to find errors,
increases the ease of verification, and encourages pro-
grammers to good programming practices. Provid-
ing programmers with the appropriate tools helps to
obtain clean code, which can be written, debugged
and validated in less time, and which can be eas-
ily modified and re-used, thus significantly reducing
costs.

Such a set was provided by the ancient iRMX
nanokernel, originally developed by Intel to promote
the usage of microprocessors in the industrial au-
tomation field.[5] [6] As it fulfils quite well all of the
above requirement, better than any subsequent alter-
native solution, we had adopted it in the past, and
then we have developed our own nanokernel based on
the same priciples, and evolved it for our embedded
applications. At the turn of the century, when a PC
solution was required, we also migrated it to a real-
time Linux environment. This gave rise to YALRT,
a nanokernel taking advantage of the RTAI HAL at
first (RTAI 1.7) and of the RTAI Adeos patch sub-
sequently (RTAI 3.1).[7]

With the progress of Linux kernel, and the avail-
ability of the RT PREEMPT patch [8], which pro-
vides latencies suitable for the vast majority of in-

dustrial processes, it became possible to take advan-
tage directly of the Linux kernel scheduling, mak-
ing an extra nanokernel unnecessary, and making it
much easier to adopt mainstream kernels, and cur-
rent Linux distributions without being obliged to rely
on third party patches. Moreover it appeared feasi-
ble to put all the real-time part in user space, as
opposed to the kernel space previously used.

However, as the real-time POSIX API’s do not
provide the features underlined above, we developed
YRmx, a thin wrapper around pthread library[9], to
expose iRMX-like API’s.

2.1 YRmx fundamentals

YRmx[13] is composed of just three software objects:

Task – a wrapper around a Linux thread, provid-
ing some extra information, such as task name and
activation semaphore. Contrary to a thread, a task
doesn’t terminate. The task code must be written as
an endless loop. When a task is no more needed it
can be deleted.

Message – a data structure constituted by a sys-
tem defined header, and a user defined body. Mes-
sages aren’t physically copied or moved. Just a
pointer to the message is passed. Message length
is arbitrary, and user defined. The system defined
header includes a length field, a type field, and a
response exchange field. The latter makes it possi-
ble to avoid the dangerous and error-prone call back
functions, which might otherwise be necessary.

Exchange – a data structure protected by a
mutex, containing two queues (linked lists): a task
queue and a message queue. At any time only one
queue can be non-empty.

An exchange can be used to provide a service,
i.e. to activate one or more tasks, a one-shot delay
or a periodic scheduling, or memory chunks (as mes-
sages). It can be used to protect a shared resource,
acting as a mutex, or to provide the functionality of
a counting semaphore.

Exchanges provide a very convenient way to ef-
fectually hide tasks from one another: if good pro-
gramming practice is used, only exchanges can be
made publicly visible, thus hiding behind them all
the implementation details.

As opposed to the over 100 primitives found in
the pthread library, just two primitives are required
to perform the bulk of the real-time operations, i.e.
inter-task communication, task synchronization, mu-
tual exclusion and memory management. The prim-
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itives are rqsend() and rqwait(). As they provide
the basic scheduling mechanism, they’re shortly de-
scribed here.

rqsend()

Synopsis:

rqsend(*exch,*msg)

A task sends a message to an exchange:

1. The task queue is non-empty. The task at the
head of the queue receives the message and be-
comes runnable.

2. The task queue is empty. The message is ap-
pended to the message queue and the running
task continues execution.

rqwait()

Synopsis:

*msg = rqwait(*exch,timeout)

A task requests for a message at an exchange.

1. The message queue is non-empty. The task re-
ceives the message and continues running.

2. The message queue is empty and timeout value
is zero. The task is suspended and appended
to the task queue.

3. The message queue is empty and timeout value
is non-zero. The task is suspended like in case
2), but if the timeout expires without a mes-
sage being sent to the exchange, the task will
receive a timeout message, and made runnable.

In addition a non-blocking function is available
(rqacpt()) which returns a message if available and
a NULL pointer if no message is available.

In summary YRmx provides:

1. 1 initialization procedure

2. 4 procedures for task synchronization, inter-
task communication, mutual exclusion and
memory management.

3. 3 creation procedures

4. 2 deletion procedures

5. 4 procedures for debugging purposes.

making it a very simple and easy to learn and to use
tool.

A summary of YRmx basics can be found in Ap-
pendix A.

From the above description is easy to see how the
YRmx framework provides all the required function-
alities, with very few simple and intuitive primitives
and rules, making real-time program development,
debug and maintenance simpler and less costly. It
can be considered a RAD tool for Linux real-time
programming.

2.2 YRmx performance

The above results have not been achieved at the cost
of reduced performance. Not only the overhead with
respect to plain pthread library functions has shown
to be negligible, but in some cases YRmx provides
a significantly better performance, when timed wait
are involved.

In order to choose the best solution, the
rqwait() function has been implemented in YRmx
both by taking advantage of the sem timedwait func-
tion of the pthread library, and by exploiting the
delay list technique of RMX (see appendix B for de-
tails).

Frank program test
@1.2GHz

Min Avg Max
sem timedwait

one-way 2158 16355 45616
round trip 3458 21184 50379

YRmx delay-list
one-way 1761 6869 37505

round trip 3234 11287 42658
@2.2GHz

sem timedwait
one-way 3730 16171 55855

round trip 5520 20986 57713
YRmx delay-list

one-way 1516 6303 33945
round trip 2819 15259 35569

Here’s a comparison table of the measured task
switching latencies by using sem timedwait and
YRmx delay-list technique. It is the classical RTL
Frank program with added profiling information and
with the addition of a third task, which perturbs the
two task communication each 117ms. The test has
been performed on a 4 core Intel I7 processor @1.2
GHz and @2.2GHz, one isolated core for real-time
tasks. 100k iterations. OS is CentOs 6.6, kernel
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3.10.10-rt7.Times are in nanoseconds.

2.3 Debugging

Ease of debugging is a very important issue. As it
is running in user space, gdb can be used for debug-
ging, but a number of specific extra debugging tools
are provided. Tasks status, exchanges, tasks wait-
ing for a timeout to expire etc. can be examined.
Applications specific additional debug functions can
be added following the guidelines of the ones pro-
vided. A “freeze” command is also available (both
from debug console and programmatically), to actu-
ally freeze real-time execution and make it possible
to analyse a snapshot of the real-time situation at a
given moment.

Here’s a sample of the output during the Frank
program execution.

Program output:

....

99 Frank Sinatra

100 Frank Sinatra

was The Voice

Debug output:

t <---- user command to show tasks

-------- Task List --------

Name st exch last msg pri

*Root* 10 (nil) (nil) 99

*Timer 10 (nil) (nil) 98

*DELAY 80 DELYEX_EX 0x606a08 97

FRANK 40 FRANK_EX 0x606ec0 85

SINATR 40 SINATR_EX 0x606ec0 81

WATCHD 40 WATCHD_EX 0x606910 43

---------------------------

x <---- user command to show exchanges

------- Exchanges --------

Exchg: DELYEX_EX Queued Tasks: *DELAY

Exchg: FRANK_EX

Exchg: SINATR_EX Queued Tasks: SINATR

Exchg: *WAIT*_EX Queued Tasks: FRANK

Exchg: WATCHD_EX Queued Tasks: WATCHD

d <---- user command to show delay list

------- Delay List --------

Name Delay exch last msg pri

FRANK 5 *WAIT*_EX 0x606ec0 85

WATCHD 73 WATCHD_EX 0x606910 43

3 Project specifications

3.1 Project aim

The project aim is to implement a modular software
to control a family of industrial machines to be used
in conjunction with digital printers, for the fabrica-
tion of high security booklets used by security print-
ers, banks, service centres, travel operators, govern-
ment offices, etc.[12]

FIGURE 1: Typical booklets

The input stream may come in many different for-
mats, namely cut sheet or continuous forms, either
fanfold or in rolls. Cut sheet may be typically in A4
or similar format, with 3 or 4 documents per page,
or in A3 or similar format with 6 or 8 documents per
page, depending on the size of the final product.

Continuous form can be printed with one, or
more documents per line, depending on input pa-
per width and final booklet size. Printing can be
either N-S or E-W. Up to four documents per line
are supported.

One or more input sections are required, to per-
form the first part of booklet fabrication, i.e. cutting,
slitting, merging and sequencing, in order to provide
a stack of sheets which constitutes the body of the
booklet.

The input section may have facilities to insert
precut documents, in order to add publicity, or other
required material.

Depending on the input stream format, and
on the number of different streams which must be
merged in the final documents, a number of different
input sections must be handled, and their number
may vary from one to three.
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Following the input section(s) a finishing section
is required, to fabricate the final product. The fin-
ishing section can add precut top and bottom covers,
precut ads, rotate the booklet either upside/down or
left to right, for proper orientation, add staples or
apply glue to the spine, add a spine tape, divert to
a separate belt or waste bin dubious booklets, insert
appropriate separators, and stack the finished prod-
ucts in an output conveyor, or send it to a subse-
quent downstream equipment, for further processing
(banding in groups, wrapping, etc.)

The throughput will be in the order of 2000 25
pages booklets/hour, meaning that the input section
must operate above 50,000 pages/hour.

FIGURE 2: Typical machine

The full system must provide positive security, by
keeping track of all the fabrication steps, and gener-
ate logs reporting machine activity, errors, and pro-
duction information for usage by QC, for traceability
and for usage optimization. It must also be able to
connect to the factory LAN in order to fetch from
data bases job data, and to store production logs.

3.2 Project requirements

The sequence of operations required to fabricate a
booklet takes a time in the order of 20/25 seconds.
Therefore, in order to achieve the desired through-
put, the sequence is split into a number of steps, so
that while step n is executed on booklet x, step n+1
is executed on booklet x-1. Each step can be split
in sub-steps, following the same logic, to achieve the
required performance.

This requires a process control system which
must be capable of handling simultaneously a num-
ber of sub-processes (typically 50 to over 100, de-
pending on the machine model) with a time response
in the sub-millisecond region.

The control system must have a modular struc-
ture, in order to accommodate the different machine
models without rewriting common parts allowing for
simultaneous development from a number of pro-
grammers.

Software modules must be as independent as pos-
sible to ease testing, simulation, validation and re-
use.

A user-friendly GUI is required to provide means
to operate and service the machine, program its jobs,
set-up parameters, and troubleshooting.

There must be provisions for network connection,
to fetch job data from company servers and to store
log information on them, and for access from remote,
for troubleshooting and software upgrades.

4 System design

The available techniques to achieve parallel opera-
tion are:

- intelligent peripherals

- multiple processors (distributed intelligence)

- real-time multitasking

All of the three have been used in this project,
leading to a general hardware structure as shown in
figure 4.

FIGURE 3: Hardware Layout

and to the corresponding software layout (figure 4)
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FIGURE 4: Software Layout

The external Boxes implementation is outside the
scope of this paper, so we will concentrate to the
main PC.

5 Hardware

The project specifications require all the capabili-
ties of a desktop PC, but the harsh industrial envi-
ronment must be taken into account. Moreover the
hardware must be well supported by Linux.

Therefore an industrial-grade PC has been se-
lected, from the same manufacturer we had success-
fully used in the past (NCS Computers[9]), which has
already proved to provide the required reliability and
which guarantees the long term support required by
industry. A 16GB flash disk was selected to improve
reliability.

Two models have been tested, one based on an
Intel Atom N2600 and one based on a quad core In-
tel I7 processors. The Atom N2600 did show slightly
better real-time performance, but the I7 was finally
selected, because of the better Linux support of the
graphical interface.

In order to keep CPU temperature as low as pos-
sible, for increased reliability, it is not run at full
speed (2.2 GHz), but rather at reduced speed (1.2
GHz). The reduced speed doesn’t show to affect sig-
nificantly overall performance.

6 Software

For system OS we evaluated LFS (Linux From
Scratch), but we discarded it, due to the excessive
maintenance costs. Finally we resorted to CentOs 6
which provides all the required features, also in terms
of configurability and long term support, and which
is also compatible with RHEL 6 which we’re using
internally in our company.

We selected KDE as desktop environment, be-
cause of better configuration flexibility and more
pleasant graphic look.

We selected kernel 3.10.10-rt7 which proved to
provide the best overall performance, as a compro-
mise between real-time and non real-time behaviour.

6.1 Human Interface

The human interface must provide a pleasant and
intuitive look toward the user, and must seamlessly
interface with the real-time part, both sending com-
mands and reacting to asynchronous events. We se-
lected fpc Lazarus [10] as a RAD tool which provides
the required features.

It provides different levels of permissions, de-
pending on the rights granted to the user logged in.
As a general rule only the commands permit-
ted to the user, and allowed by the current
context of the machine state are shown, thus
avoiding confusion and possible errors.

It is organized as a finite state machine, whose
state diagram is shown in fig. 5.

FIGURE 5: Main State diagram

This scheme makes it impossible to change critical
parameters or to give test commands while the ma-
chine is running, while it makes possible to set up
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initial configuration parameters, even if the machine
is non functional or not connected.

The connection with the real-time application is
made using stock Linux IPC facilities, i.e. a num-
ber of fifo’s, writing and reading messages already
formatted as YRmx messages. The IPC scheme is
shown in fig 6.

FIGURE 6: Inter Process Communication

The cmd fifo is used to send messages to the real-
time tasks, and the answ fifo to receive associated
answers.

The status and error fifo’s receive asyn-
chronous messages from the real-time tasks.

Status messages are used to update the display
to provide a visual feedback of machine operation.

Error messages are used to display error infor-
mation. A synoptic of the machine is shown, with
the icon of the offending device highlighted.

The reset fifo is used to send a reset message to
the real-time section, which clears the error condition
and allows to resume the operation.

Writing to fifo’s is performed in the main thread
of the application, while reading is performed by an
auxiliary thread, which appends received messages
in appropriate queues and then wakes up the loop of
the main thread by means of fpc messages, to ensure
proper display of asynchronous received data.

7 Real-time design

In order to ensure consistency across the project, to
take advantage of YRmx features and to provide ad-
equate system robustness, a number of general rules
have been established which every programmer is re-
quired to comply.

7.1 Public and private exchanges

In order to permit inter-task communication and
synchronization, the exchanges where tasks wait for
activation messages must be public and system-wide
visible. They should be created at startup taking ad-
vantage of the startup procedure (rqstart). On the
contrary, the exchanges where it waits for responses
must be private, to ensure that only valid responses
are received. It is task responsibility to create them.

7.2 Message rules

All application messages must be of the same
length. This makes it possible to take advantage
of a common message pool. Whenever possible the
Standard message structure is to be preferred.

A task receiving a message must always
either forward it, or send it back to the mes-
sage response exchange, with type and content
modified appropriately.

Sent Message types are in the range 0x40 – 0x7F,
lower values being reserved for system messages. Re-
sponse message types are in the range 0x80 – 0x9F,
with even values reserved for no-error responses, and
odd values for error responses. Message types for
handling a process fall in the following categories:

1. Messages to provide information, such
as configuration or job parameters – Ex-
pected response: either exec cmd (0x80) or
non exec err (0x81)

2. Messages to query information such as sta-
tus req (0x48) – Expected response: congru-
ent with the requested information e.g. re-
ply status (0x84); non exec err (0x81) in
case of error.

3. Messages requesting an action, such as
start (0x40), cmd man (0x42) – Ex-
pected responses: exec cmd, exec err,
non exec err.

Task action upon receiving a message is, of
course task dependent.
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The response to a message, and the action upon
receiving a response are subject to strict rules, to
ensure consistency, simplicity and robustness.

FIGURE 7: Skeleton Application Task

For better overall efficiency a task should send
the response as soon as there is a condition
for the other tasks to continue, and execute any
required local further operation after that.

If the requested action has been successfully
completed the response type will be an even type,
context dependent, and it will be sent to the re-
sponse exchange.

In case of error, the response type will be an odd
type, and the message will be sent to the err ex, to
be processed by the error handler task. The error
handler will take care to send the message to its re-
sponse exchange.

An error response can be either non exec err
or exec err. The first one means that the requested
action has failed, and it should be retried. The sec-
ond one means that an error occurred , but the re-
quested action has been however completed.

The benefits of this solutions are that a tasks re-
ceives only the information relevant for its execution,

i.e. continue or retry (or recover-retry depending on
the specific case), and that the error is displayed as
soon as it is detected, and not when the receiving
task is activated.

A skeleton flow-chart of a typical application task
is shown in fig. 7.

7.3 Message structure

As we have seen, the main PC is connected to a num-
ber of slave units, which take care of the lower level
control functions. Each slave unit is partitioned in a
number of physical or logical devices. A unique de-
vice numbering has been chosen, so that each device
number maps to a single device, and to the public
exchange which can be used to send messages to.
Message structure must take into account this fact.

The standard message structure is described be-
low. For some special purposes (such as sending
configuration and some application dependent data),
other layouts are used, but always keeping the same
total length. As messages need also to be sent re-
motely, they’re byte packed because the efficiency
gained by better memory alignment would be offset
by the overhead of longer transmission time or con-
version before transmitting and after receiving.

#pragma pack(1)

#define MaxPosLen 192

typedef struct {

msghdr;

unsigned short tag;

unsigned char unit;

unsigned char len;

unsigned char device;

unsigned int fstat;

unsigned int ftout;

unsigned int fover;

unsigned short cuts;

unsigned char pos[MaxPosLen];

} STANDARD_MSG_DESCRIPTOR;

msghdr is described in Appendix A, and it in-
cludes the type field.

The pos array field is used to store task depen-
dent information. The len field specifies the actual
amount of the array required, when this can’t be in-
ferred by the message type.

The device and unit fields are explained above.
The unit field is somewhat redundant because each
device maps to a specific unit, but it helps to simplify
the code.

The fields fstat ftout and fover are used mainly
for error handling and will be seen in detail later on.
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7.4 Main control logic

Also the real-time part is conceived as a finite state
machine, with just two top-level states: Running
and Stopped. This is achieved by means of two
exchanges, named start ex and stop ex and a mes-
sage, named go msg. Whenever the go msg is ap-
pended to start ex the machine is in the Running
state. When it’s appended to stop ex, the machine is
in the Stopped state. The go msg type provides fur-
ther sub-state information. The main control logic
is shown in fig.8

FIGURE 8: Main control logic

The state can be changed by

1. manual commands coming from HI,

2. a control task decision such as end of job, end
of cycle in a single booklet mode, temporary
hold, waiting for an upstream or downstream
device

3. the Error Handler

The go msg types are

1. m hlt : single booklet mode

2. m err : error condition, set by the Error Han-
dler upon receiving an error, and cleared by the
same upon receiving a reset

3. m go: continuous operation

4. m hold : waiting for an external device

At each relevant step of execution application
tasks will wait for the go msg at the start ex ex-
change, and then put the message back.

This is a snippet of code to show how this can
be used in practice:

static void WaitOk (void) {

MSG_DESCRIPTOR *hmsg;

hmsg = rqwait(&start_ex,0);

rqsend(&start_ex,hmsg);

}

This is another snippet, including the support
for the step-by-step operation, useful for debugging
and mechanical troubleshooting:

static void WaitOk (void) {

MSG_DESCRIPTOR *hmsg;

hmsg = rqwait(&start_ex,0);

if (ByStep) hmsg->response_exchange = &stop_ex;

rqsend(hmsg->response_exchange,hmsg);

}

Multiple error may occur, therefore the Error Han-
dler must be able to properly set the stop-in-error
condition, wherever the go msg is currently ap-
pended. The code used is the following:

static MSG_DESCRIPTOR *search_go (void) {

MSG_DESCRIPTOR *go_msg;

go_msg = rqacpt(&start_ex);

if (go_msg == NULL) go_msg = rqacpt(&stop_ex);

while (go_msg == NULL) {

go_msg = rqwait(&start_ex,5);

if (go_msg->type == timeout_type) {

go_msg = rqwait(&stop_ex,5);

if (go_msg->type == timeout_type)

go_msg = NULL;

}

}

return (go_msg);

}

static void SetStop(void) {

MSG_DESCRIPTOR *HMsg;

HMsg = search_go();

HMsg->type = m_err;

HMsg->response_exchange = &stop_ex;

rqsend(HMsg->response_exchange,HMsg);

if (err_msg->device == general_dev)

MotorOff();

}
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static void ClrErr(void) {

MSG_DESCRIPTOR *HMsg;

HMsg = search_go();

if (HMsg->type == m_err) HMsg->type = m_hlt;

HMsg->response_exchange = &stop_ex;

rqsend(HMsg->response_exchange,HMsg);

}

Where the procedure search go is used to locate
the go msg, taking into account that other tasks may
have taken it temporarily, while SetStop sets the er-
ror condition, and ClrErr clears it.

7.5 Serial Communication

To ensure the required reliability in the harsh indus-
trial environment, we selected a four wires RS422 9
bit multidrop scheme @ 230 kBaud. We avoided to
write a special driver, and we just used Linux I/O.

7.5.1 Transport layer

The transport layer protocol is a derivative of the
BitBus protocol, with some additional features in-
spired from the ancient IBM’s BiSync protocol, to
improve robustness. It is a master/slave protocol al-
lowing for packets of up to 248 bytes.

The master (PC side) performs a polling cycle
every millisecond, or when it receives a message to
send, whichever comes first. It keeps in a buffer a
message for each slave unit, both for proper syn-
chronization with the polling cycle, and to permit
retransmission in case of error. The following snippet
of code shows the core of the polling task. It demon-
strates how a task can be made periodic, how a pe-
riodic task can be suspended and resumed,or started
immediately.

if (!PollMask) tmax = 0;

else tmax = 1;

a_msg = SMD rqwait(&mast_ex,tmax);

if (a_msg->type > timeout_type) {

if (a_msg->type == MaskDevice)

PollMask = a_msg->pos[0];

else {

RX_ID = a_msg->unit & 0x7;

xmit_buf[RX_ID].len = a_msg->pos[0];

xmit_buf[RX_ID].retries = 10;

}

a_msg->type = exec_cmd;

rqsend(a_msg->response_exchange, MD a_msg);

}

The simplified logical structure is shown in fig. 9.

FIGURE 9: Low level communication

7.5.2 Data transmission

As the message structure is byte packed, data trans-
mission may disregard the message type, and treat
all messages as a sequel of bytes. This simplifies the
code, and makes data transmission logic independent
from the message structures actually used for differ-
ent purposes.

Data transmission logic must take into account
that

1. for efficiency, the packet sent should be as short
as possible

2. all the messages are funnelled through a single
physical serial line

3. almost simultaneous requests to send a mes-
sage may come from different tasks and bound
to different slaves

4. the translation of messages into serial pack-
ets involves a certain overhead, to compute the
checksum, to escape the 0xFF characters, etc.
This overhead should not penalize other tasks,
and generate priority inversion.

5. a message can be considered successfully sent
only when an ACK has been received.

6. we must be able to handle the response to a
message

7. we must be able to handle gracefully the failure
to send a message

In order to comply with those requirements, a num-
ber of measures have been taken, namely:
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1. the full header of the message is not sent, but
only the tag and type fields

2. the send logic has been split into a driver task
and a send task

3. one driver task per slave has been assigned.
The appropriate task is selected by a public
dispatching subroutine.

4. the individual driver tasks must handle all the
packet formatting functions

5. the transmission task sends the ready-to-send
packets to the low level driver task, waits for
the result, and, when the transmission has been
successful, it stores the original message into a
list to honour the subsequent response.

6. an abort command can be sent to abort the
sending of a message,and avoid to wait indefi-
nitely for the response to a message which has
not been sent.

FIGURE 10: Data transmission

As the driver tasks share the same code, except for
the exchange they wait at, and a few other minor

details, multiple copies of the same task are created,
with the initialization section taking care of adjust-
ing the required details.

The simplified structure of data transmission is
shown in fig. 10, with abort logic omitted for sim-
plicity.

7.5.3 Data receive

The received message can be either the response to a
message sent, or an asynchronous (unsolicited) mes-
sage, to provide status or error information. An un-
solicited message is recognized by a null tag field.

For a non-null tag field the receiving task takes
advantage of the tag field, to recover from the Ms-
gLog list the original message. It will copy the in-
formation received to the original message and send
it to its response exchange, or to the error handler if
the received type tells so.

To handle unsolicited messages, a dispatching
table is supplied, which maps each sending device
(from the dev field of the message) to the appro-
priate exchange. Therefore a new message can be
obtained from the pool, the body is filled from the
received message, and the response exchange is set
from the dispatching table. The most usual condi-
tion is to handle just error messages. In that case
the only actions required are those performed by the
error handler and the response exchange will be just
the message pool. The simplified structure of data
receive is shown in fig. 11.

FIGURE 11: Data receive
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7.6 Error handling

We have already seen how errors are handled in the
flow of the process control execution. It remains to
describe how errors are communicated to the opera-
tor, so that he/she can take corrective actions.

In order to provide appropriate user feedback, we
have decided to display a synoptic of the machine,
showing the state of all the sensors in the section
involved, with the one(s) giving rise to the problem
highlighted.

Experience has shown that the vast majority of
the errors are detected by input sensors and fall into
two categories:

1. an expected event failed to occur within the
expected time (time-out errors)

2. an unexpected event occurred (overrun errors)

Therefore the message structure includes three 32
bits fields: one to represent the current state of up
to 32 input sensors (the fstat field), one to mark
the ones affected by timeout error (the ftout field),
and one to mark the ones affected by overrun error
(the fover field) When a slave unit has more than
32 input devices, the dev field of the message can be
used to determine which part of the offending section
should be displayed. Sensor state is shown with ap-
propriate icons with transparent background, while
timeout errors appear in blue background, and over-
run errors in red background.

Of course error display is a function of the HI
part. The real-time responsibility is to fill up the
fields as required.

FIGURE 12: Error display

Errors not falling in the above categories carry
a different type, and the error fields carry additional
detail information. A screen snapshot of a portion of
the error display is shown in fig 12.

7.7 Debug and simulation

The first machine where the YRmx framework has
been used is perhaps one of the simplest of the family,
however the Object Pascal code for the HI exceeds
the 20000 lines of code, while the C real-time part
code is little less than 10000 lines.

Simply replacing the driver tasks of the commu-
nication part with others which provided the appro-
priate response with an appropriate delay, and which
inserted some random errors, leaving all the rest un-
touched, has permitted to test and debug all the soft-
ware, and to evaluate the performances, without the
need of the physical large machine, which was under
construction.

The actual debugging on the machine has re-
quired no more than two extra days, to fix the few
details which had not been detected by the simula-
tion.

The subsequent factory tests to validate the
product, which lasted several weeks, didn’t show any
unforeseen problem.

8 Conclusions

Our goal was to take advantage of an RT PREEMP
patched kernel and to make available a flexible, easy
to use and robust set of API’s for our industrial con-
trol applications.

The case selected is representative of a very wide
set of applications in many industrial fields we have
dealt with, such as textile, packaging, and different
manufacturing equipments.

The results we have obtained speak well in favour
both of the work of Linux Kernel developers, and of
the YRmx framework.

YRmx source code is licensed under LGPL and
can be freely downloaded from our website.[13]

A YRmx basics

A.1 Exchange structure

typedef struct exchange_descriptor {
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struct msg_descriptor *message_head;

struct msg_descriptor *message_tail;

struct task_descriptor *task_head;

struct task_descriptor *task_tail;

struct exchange_descriptor *exchange_link;

pthread_mutex_t mutex;

unsigned char name[EXCH_NAME_LEN+1];

} EXCHANGE_DESCRIPTOR;

A.2 Message structure

#define msghdr \

struct msg_descriptor *link; \

unsigned int length; \

unsigned int type;\

unsigned int yltime; \

struct exchange_descriptor *home_exchange; \

struct exchange_descriptor *response_exchange

typedef struct msg_descriptor {

msghdr;

unsigned char user_defined [1];

} MSG_DESCRIPTOR;

#define int_type 1

#define missed_int_type 2

#define timeout_type 3

A.3 Task structure

#define task_links \

struct task_descriptor *next; \

struct task_descriptor *prev; \

struct task_descriptor *link; \

unsigned short delay;\

struct timespec ts;

#define td_middle_part\

struct exchange_descriptor *exchange; \

sem_t sema; \

pthread_t thread; \

void (*thread_start)(); \

unsigned char priority;\

unsigned char status;\

struct static_task_descriptor *nameptr;

#define td_end_part \

struct task_descriptor *tasklink;\

unsigned char master_mask;\

unsigned char slave_mask;

typedef struct task_descriptor {

task_links;

struct msg_descriptor *message;

td_middle_part;

td_end_part;

} TASK_DESCRIPTOR;

#define delayed 0x01

#define suspended 0x02

#define maskint 0x04

#define helper 0x08

#define running 0x10

#define needpost 0x20

#define deleted 0x40

#define waiting 0x80

A.4 API’s

typedef EXCHANGE_LIST_PTR *IET[];

typedef STD_LIST_PTR *ITT[];

extern int reqstart (STD_LIST_PTR itt[],

int ntask,EXCHANGE_LIST_PTR iet[],int nexch);

extern void reqctsk(STATIC_TASK_DESCRIPTOR *);

extern void reqcxch(EXCHANGE_LIST_PTR,

const char *);

extern void reqcmsg(MSG_DESCRIPTOR * , int );

extern void reqdtsk (TASK_DESCRIPTOR *);

extern int reqdxch (EXCHANGE_DESCRIPTOR *);

extern void reqsusp (TASK_DESCRIPTOR *);

extern void reqresm (TASK_DESCRIPTOR *);

extern void reqfreeze(void);

extern void reqbake(void);

extern void reqsend (EXCHANGE_LIST_PTR ,

MSG_DESCRIPTOR *);

extern MSG_DESCRIPTOR * reqacpt (EXCHANGE_LIST_PTR );

extern MSG_DESCRIPTOR *reqwait(EXCHANGE_LIST_PTR ,

unsigned short);

extern unsigned int reqsystime();

A.5 Compatibility API’s

#define rqstart reqstart

#define rqctsk reqctsk

#define rqcxch reqcxch

#define rqcmsg reqcmsg

#define rqdtsk reqdtsk

#define rqdxch reqdxch

#define rqsusp reqsusp

#define rqresm reqresm

#define rqfreeze reqfreeze

#define rqbake reqbake
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#define rqsend reqsend

#define rqacpt reqacpt

#define rqwait reqwait

#define rqsystime reqsystime()

B Delay list

YRmx provides timed waits, with the resolution of
the YRmx system tick whose suggested value is 1 ms.
Timed waits can be used to provide a timeout when
waiting for an event to occur, to insert a delay or
to provide periodic task activation. The technique
used provides a minimal overhead, independent of
the number of timings required.

FIGURE 13: Delay list

It is implemented by a doubly linked list of the wait-
ing tasks, ordered by increasing delay, and each one

carrying the additional delay with respect to the pre-
vious. In this way the system tick needs only to
decrement the value at the head of the list. When it
goes to zero the time has expired, the task is removed
from the list and made runnable, and the next one
becomes the head of the list. The doubly linked list
makes inserting or removing an item quite fast. This
technique eliminates any overhead at each tick, at
the cost of a minimal overhead to insert a new item
in the appropriate place of the list. Fig. 13 shows
the list status, with three tasks respectively waiting
5, 10 and 15 ticks, and the effect of removing one of
them from the list.
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